A Method of Solving a System of Linear Equations Whose Coefficients Form a Tridiagonal Matrix* By

نویسنده

  • THOMAS C. T. TING
چکیده

A~1 so obtained, however, is no longer a tridiagonal matrix. If 1 is a n X ft matrix, we will have in general n2 elements of A-1. When n is large, this method becomes unwieldy, even with an electronic computer. Linear equations similar to Eqs. (1) are frequently encountered in problems of mathematical physics. For instance, the backward finite difference method for solving the heat equation requires the solution of equations (2) for each step where A is fixed and d is changed from step to step. Heat equations also appear in the study of longitudinal impact on visco-plastic rods. The solution of other problems, such as discretely loaded strings and the application of the three moment theorem to continuous beams, result in equations of the form of (2). Methods are known which enable one to determine x of (2) more efficiently than by using Eq. (3) (see [1], [2] for example). In the following, we will present another method which is very efficient and convenient for ordinary physical problems. The comparison with the traditional triangular decomposition method is presented in the Appendix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016